Kunming Jiang

Gates & Hillman Centers, Office 5103 4902 Forbes Ave, Pittsburgh, PA 15213 E: kunmingj@andrew.cmu.edu P: 646-220-7606

EDUCATION

Carnegie Mellon University

Pittsburgh, PA

Ph.D. candidate in Computer Science

since September 2022

Advisors: Riad Wahby and Fraser Brown

New York University

New York, NY

Bachelor of Art, Summa Cum Laude

May 2022

Major in Mathematics and Computer Science, Minor in German

RESEARCH PROJECTS

CoBBI, with Riad Wahby and Fraser Brown

September 2022 — Present

- Explored verifiable computation through the lens of program basic blocks.
- Compiler-proof system co-design that minimizes proving time of SNARK systems.
- Implemented in *Rust* an end-to-end system ranging from high-level programs down to low-level polynomial evaluation.
- Paper under review in IEEE S&P 2025.

Ceno Recursive Verifier, with Scroll Team

June 2024 — Present

- Explored the viability of CoBBl as a recursive verifier to Scroll's newest zkVM system.
- Developed CoBBl to match industry-level performance as well as co-designed and implemented a batched version of the WHIR polynomial commitment scheme.

DictOSON, with Garret Swart and Oracle Team

June 2023 — August 2023

- Drafted and implemented a new JSON encoding format that reduces storage space by up to 50% while maintaining the same data retrieval speed.
- Collaborated with designers of previous JSON encodings to evaluate the performance of the new format across real-life use cases.
- Project currently under patent review.

Distiller, with Michael Walfish and Thomas Wies

May 2020 — May 2023

- Formulated a standardized technique to prove the correlation between a C program and its high-level specification. Enabled more concise SNARK proofs without losing any correctness guarantees.
- Constructed in C an end-to-end automated system that verifies the correctness of selected benchmarks and records the improvement.
- Paper accepted to IEEE S&P 2023. See citation below.

PUBLICATIONS

K. Jiang, D. Chait-Roth, Z. DeStefano, M. Walfish and T. Wies, "Less is more: refinement proofs for probabilistic proofs," *2023 IEEE Symposium on Security and Privacy (SP)*, San Francisco, CA, USA, 2023, pp. 1112-1129, doi: 10.1109/SP46215.2023.10179393